Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(8): 3248-3259, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795589

RESUMO

COVID-19 pandemic-related building restrictions heightened drinking water microbiological safety concerns post-reopening due to the unprecedented nature of commercial building closures. Starting with phased reopening (i.e., June 2020), we sampled drinking water for 6 months from three commercial buildings with reduced water usage and four occupied residential households. Samples were analyzed using flow cytometry and full-length 16S rRNA gene sequencing along with comprehensive water chemistry characterization. Prolonged building closures resulted in 10-fold higher microbial cell counts in the commercial buildings [(2.95 ± 3.67) × 105 cells mL-1] than in residential households [(1.11 ± 0.58) × 104 cells mL-1] with majority intact cells. While flushing reduced cell counts and increased disinfection residuals, microbial communities in commercial buildings remained distinct from those in residential households on the basis of flow cytometric fingerprinting [Bray-Curtis dissimilarity (dBC) = 0.33 ± 0.07] and 16S rRNA gene sequencing (dBC = 0.72 ± 0.20). An increase in water demand post-reopening resulted in gradual convergence in microbial communities in water samples collected from commercial buildings and residential households. Overall, we find that the gradual recovery of water demand played a key role in the recovery of building plumbing-associated microbial communities as compared to short-term flushing after extended periods of reduced water demand.


Assuntos
COVID-19 , Água Potável , Microbiota , Humanos , Engenharia Sanitária , Água Potável/microbiologia , Abastecimento de Água , RNA Ribossômico 16S/genética , Pandemias , Qualidade da Água , Microbiologia da Água
2.
Water Res ; 229: 119497, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563511

RESUMO

Studies have found Ca. Nitrospira nitrosa-like bacteria to be the principal or sole comammox bacteria in nitrogen removal systems for wastewater treatment. In contrast, multiple populations of strict ammonia and nitrite oxidizers co-exist in similar systems. This apparent lack of diversity is surprising and could impact the feasibility of leveraging comammox bacteria for nitrogen removal. We used full-length 16S rRNA gene sequencing and genome-resolved metagenomics to compare the species-level diversity of comammox bacteria with that of strict nitrifiers in full-scale wastewater treatment systems and assess whether this comparison is consistent or diverged at the strain-level. Full-length 16S rRNA gene sequencing indicated that Nitrosomonas-like bacteria exhibited higher species-level diversity in comparison with other nitrifying bacteria, while the strain-level diversity (also called microdiversity) of most Nitrospira-like bacteria were higher than Nitrosomonas-like bacteria with few exceptions (one Nitrospira lineage II population). Comammox bacterial metagenome assembled genomes (MAGs) were associated with Ca. Nitrospira nitrosa. The average amino acid identity between principal comammox bacterial MAGs (93% ± 3) across systems was significantly higher than that of the Nitrosomonas-like ammonia oxidizers (73% ± 8), the Nitrospira_A-like nitrite oxidizer (85% ± 4), and the Nitrospira_D-like nitrite oxidizer (83% ± 1). This demonstrated the low species-level diversity of comammox bacteria compared with strict nitrifiers and further suggests that the same comammox population was detected in all systems. Comammox bacteria (Nitrospira lineage II), Nitrosomonas and, Nitrospira_D (Nitrospira lineage II) MAGs were significantly less microdiverse than the Nitrospira_A (lineage I) MAGs. Interestingly, strain-resolved analysis also indicates that different nitrogen removal systems harbor different comammox bacterial strains within the Ca. Nitrospira nitrosa cluster. These results suggest that comammox bacteria associated with Ca. Nitrospira nitrosa have low species- and strain-level diversity in nitrogen removal systems and may thus harbor specific adaptations to the wastewater ecosystem.


Assuntos
Amônia , Águas Residuárias , Amônia/metabolismo , Nitritos/metabolismo , Nitrificação , RNA Ribossômico 16S/genética , Ecossistema , Oxirredução , Bactérias/metabolismo , Filogenia , Archaea/metabolismo
3.
FEMS Microbiol Ecol ; 98(4)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35325104

RESUMO

Complete ammonia oxidizing bacteria coexist with canonical ammonia and nitrite oxidizing bacteria in a wide range of environments. Whether this is due to competitive or cooperative interactions, or a result of niche separation is not yet clear. Understanding the factors driving coexistence of nitrifiers is critical to manage nitrification processes occurring in engineered and natural ecosystems. In this study, microcosm-based experiments were used to investigate the impact of nitrogen source and loading on the population dynamics of nitrifiers in drinking water biofilter media. Shotgun sequencing of DNA followed by co-assembly and reconstruction of metagenome assembled genomes revealed clade A2 comammox bacteria were likely the primary nitrifiers within microcosms and increased in abundance over Nitrosomonas-like ammonia and Nitrospira-like nitrite oxidizing bacteria irrespective of nitrogen source type or loading. Changes in comammox bacterial abundance did not correlate with either ammonia or nitrite oxidizing bacterial abundance in urea-amended systems, where metabolic reconstruction indicated potential for cross-feeding between strict ammonia and nitrite oxidizers. In contrast, comammox bacterial abundance demonstrated a negative correlation with nitrite oxidizers in ammonia-amended systems. This suggests potentially weaker synergistic relationships between strict ammonia and nitrite oxidizers might enable comammox bacteria to displace strict nitrite oxidizers from complex nitrifying communities.


Assuntos
Amônia , Archaea , Amônia/metabolismo , Archaea/genética , Bactérias , Ecossistema , Elétrons , Nitrificação , Nitritos/metabolismo , Nitrogênio/metabolismo , Oxirredução , Filogenia
4.
ACS ES T Water ; 2(11): 1836-1843, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36778666

RESUMO

Wastewater surveillance is a proven method for tracking community spread and prevalence of some infectious viral diseases. A primary concentration step is often used to enrich viral particles from wastewater prior to subsequent viral quantification and/or sequencing. Here, we present a simple procedure for concentrating viruses from wastewater using bacterial biofilm protein nanofibers known as curli fibers. Through simple genetic engineering, we produced curli fibers functionalized with single-domain antibodies (also known as nanobodies) specific for the coat protein of the model virus bacteriophage MS2. Using these modified fibers in a simple spin-down protocol, we demonstrated efficient concentration of MS2 in both phosphate-buffered saline (PBS) and in the wastewater matrix. Additionally, we produced nanobody-functionalized curli fibers capable of binding the spike protein of SARS-CoV-2, showing the versatility of the system. Our concentration protocol is simple to implement, can be performed quickly under ambient conditions, and requires only components produced through bacterial culture. We believe this technology represents an attractive alternative to existing concentration methods and warrants further research and optimization for field-relevant applications.

5.
Water Res ; 169: 115268, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726394

RESUMO

The discovery of the complete ammonia oxidizing (comammox) bacteria overturns the traditional two-organism nitrification paradigm which largely underpins the design and operation of nitrogen removal during wastewater treatment. Quantifying the abundance, diversity, and activity of comammox bacteria in wastewater treatment systems is important for ensuring a clear understanding of the nitrogen biotransformations responsible for ammonia removal. To this end, we conducted a yearlong survey of 14 full-scale nitrogen removal systems including mainstream conventional and simultaneous nitrification-denitrification and side-stream partial nitrification-anammox systems with varying process configurations. Metagenomics and genome-resolved metagenomics identified comammox bacteria in mainstream conventional and simultaneous nitrification-denitrification systems, with no evidence for their presence in side-stream partial nitrification-anammox systems. Further, comammox bacterial diversity was restricted to clade A and these clade A comammox bacteria were detected in systems with long solids retention times (>10 days) and/or in the attached growth phase. Using a newly designed qPCR assay targeting the amoB gene of clade A comammox bacteria in combination with quantitation of other canonical nitrifiers, we show that long solids retention time is the key process parameter associated with the prevalence and abundance of comammox bacteria. The increase in comammox bacterial abundance was not associated with concomitant decrease in the abundance of canonical nitrifiers; however, systems with comammox bacteria showed significantly better and temporally stable ammonia removal compared to systems where they were not detected. Finally, in contrast to recent studies, we do not find any significant association of comammox bacterial prevalence and abundance with dissolved oxygen concentrations in this study.


Assuntos
Desnitrificação , Nitrogênio , Amônia , Bactérias , Reatores Biológicos , Nitrificação , Oxirredução , Prevalência , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...